UNIVERSITY OF NORTH BENGAL
B.Sc. Honours 6th Semester Examination, 2023

DSE-P3-MATHEMATICS

Time Allotted: 2 Hours
Full Marks: 60
The figures in the margin indicate full marks.

The question paper contains DSE-3A and DSE-3B. Candidates are required to answer any one from the two courses and they should mention it clearly on the Answer Book.

 DSE-3A

 DSE-3A

 POINT SET TOPOLOGY

 POINT SET TOPOLOGY

 GROUP-A

 GROUP-A}Answer any four questions
$3 \times 4=12$

1. Let X denotes two element set $\{0,1\}$. Prove that X^{w} is uncountable.
2. Let $\left\{\tau_{\alpha}\right\}$ be a family of topologies on a non-empty set X. Show that $\bigcap_{\alpha} \tau_{\alpha}$ is also a topology on X.
3. Prove or disprove - the union of an infinite number of closed sets in a topological space is closed.
4. Show that \mathbb{Z}_{+}is not finite.
5. Prove that $|[0,1]|=c$.
6. Show that the product of two Hausdorff spaces is Hausdorff.

GROUP-B

Answer any four questions

$6 \times 4=24$
7. Let β be a family of subsets of X satisfying the conditions:

6
(i) $\forall x \in X, \exists B \in \beta$ such that $x \in B$.
(ii) $\forall B_{1}, B_{2} \in \beta$ with $x \in B_{1} \cap B_{2}, \exists B_{3} \in \beta$ such that $x \in B_{3} \subseteq B_{1} \cap B_{2}$.

Let τ be the collection of all possible union of members of β. Prove that τ is a topology on X.

UG/CBCS/B.Sc./Hons./6th Sem./Mathematics/MATHDSE3/2023

8. For any set X, prove that $|P(X)|=2^{|X|}$.
9. (a) Show that every infinite set has an enumerable subset.
(b) Let A be an enumerable set and $a \in A$ be fixed. If $A^{\prime}=A \backslash\{a\}$, show that A and A^{\prime} are equipotent.
10. Show that a topological space X is Hausdorff iff the diagonal $\Delta=\{(x, x): x \in X\}$ is closed in $X \times X$.
11. Let $p: X \rightarrow Y$ be a closed, continuous and surjective map such that for every point $y \in Y, p^{-1}(\{y\})$ is compact in X. Show that if Y is compact, so is X.
12. State and prove Cantor's Theorem.

GROUP-C

Answer any two questions

13.(a) Show that if A, B, C are pairwise disjoint sets with $|A|=\alpha,|B|=\beta,|C|=\gamma$, then

$$
\left(\alpha^{\beta}\right)^{\gamma}=\alpha^{\beta \gamma}
$$

(b) If n is any natural number and A be any infinite set, then prove that $n+|A|=|A|$.
(c) For $a, b \in \mathbb{R}$, define $a<b$ if $b-a$ is positive and rational. Show that ' $<$ ' is a strict partial order on \mathbb{R}. What are the maximal simply ordered subsets of \mathbb{R} ?
14.(a) Let A and B be proper subsets of the connected spaces X and Y respectively. Show that $(X \times Y) \backslash(A \times B)$ is connected. Hence conclude that $\mathbb{R}^{2} \backslash \mathbb{Q}^{2}$ is connected.
(b) Define limit-point compactness. Show that compact space is limit-point compact but not conversely.
15.(a) State and prove Baire Category Theorem.
(b) Let $f: X \rightarrow Y$ be a bijective mapping. Prove that the following are equivalent:
(i) f is a homeomorphism.
(ii) f is open and continuous.
(iii) f is closed and continuous.
(iv) $f(\bar{A})=\overline{f(A)}$ for any $A \subseteq X$.

UG/CBCS/B.Sc./Hons./6th Sem./Mathematics/MATHDSE3/2023

16.(a) Show that the topologies on \mathbb{R}^{n} induced by the Euclidean metric d and the square metric ρ are the same as the product topology on \mathbb{R}^{n}.
(b) Investigate the convergence and the possible limit(s) of the sequence $\left\{x_{n}=\frac{1}{n}\right\}$ in the cofinite topology on \mathbb{R}.

DSE-3B

Boolean Algebra and Automata Theory
 GROUP-A

Answer any four questions from the following

1. Let L be a lattice and $a, b \in L$. Then show that $a \leq b \Rightarrow a \vee c \leq b \vee c$ and $a \wedge c \leq b \wedge c$ for any $c \in L$.
2. For any two elements x, y in a lattice L, let $[x, y]=\{a \in L: x \leq a \leq y\}$. Show that $[x, y]$ is a sub-lattice of L.
3. Consider the poset $P=(P(\mathbb{N}), \subseteq)$. Define a map $\phi: P \rightarrow P$ by

$$
\phi(v)=\left\{\begin{array}{ccc}
\{1\} & \text { if } & 1 \in v \\
\{2\} & \text { if } & 2 \in v \text { and } 1 \notin v \\
\Phi & \text { otherwise } &
\end{array}\right.
$$

Is ϕ an order isomorphism? Justify your answer.
4. Construct a finite automata equivalent to the regular expression:
(i) $L=a b(a a+b b)(a+b)^{*} b$
(ii) $L=a a^{*}(a+b)^{*}$
5. Find the parse tree for generating the string 0100110 from the following grammar:

$$
\begin{aligned}
& S \rightarrow 0 S / 1 A A \\
& A \rightarrow 0 / 1 A / 0 B \\
& B \rightarrow 1 / 0 B B
\end{aligned}
$$

6. Construct a logic circuit that produces $(x+y+z)(x y z)^{\prime}$ as its output.

GROUP-B

Answer any four questions from the following
7. (a) Convert the NFA to equivalent DFA:

(b) Prove that every regular language is a context-free language.
8. (a) Check whether the following grammar is ambiguous or not:

$$
\begin{aligned}
& S \rightarrow 0 Y / 01 \\
& X \rightarrow 0 X Y / 0 \\
& Y \rightarrow X Y 1 / 1
\end{aligned}
$$

(b) Design a DFA that accepts the following language
$L=\left\{x \in\{0,1\}^{*}: x\right.$ is of even length and begins with 01$\}$.
9. (a) Determine the DNF of the following Boolean expression:

$$
(x+y+z)\left(x y+x^{\prime} z^{\prime}\right)^{\prime}
$$

(b) Draw the switching circuits which realizes the following Boolean expressions:
(i) $x\left(y z+y^{\prime} z^{\prime}\right)+x^{\prime}\left(y z^{\prime}+y^{\prime} z\right)$
(ii) $(x+y+z+u)(x+y+u)(x+z)$
10.(a) Determine which of the following lattices are modular or distributive:
(i)

(ii)

(b) Find an NFA M on $\Sigma=\{a, b\}$ such that $L(M)=\{a b, b a\}$.
11.(a) Construct a PDA to accept the following language:
$L=\left\{a^{n} b^{2 n}: n \geq 1\right\}$.
(b) For any Boolean algebra B, prove that $(a+b)(b+c)(c+a)=a b+b a+c a$ for all $a, b, c \in B$.
12.(a) Let L be a complemented distributive lattice. Prove that $(a \vee b)^{\prime}=a^{\prime} \wedge b^{\prime}$ and $(a \wedge b)^{\prime}=a^{\prime} \vee b^{\prime}$ for all $a, b \in L$.
(b) Show that in a complemented distributive lattice, the following are equivalent
(i) $a \leq b$
(ii) $a \wedge b^{\prime}=0$
(iii) $a^{\prime} \vee b=1$
(iv) $b^{\prime} \leq a^{\prime}$

GROUP-C

Answer any two questions from the following
13.(a) Design a Turing machine that accepts the language $L=\left\{O^{2^{n}}: n \geq 0\right\}$.
(b) State and prove pumping lemma for regular languages and hence show that the language $\left\{a^{p}: p\right.$ is a prime integer $\}$ is not regular.
14.(a) Consider the following ε-NFA.

	ε	a	b	c
$\rightarrow p$	ϕ	$\{p\}$	$\{q\}$	$\{r\}$
q	$\{p\}$	$\{q\}$	$\{r\}$	ϕ
$*_{r}$	$\{q\}$	$\{r\}$	ϕ	$\{p\}$

(i) Compute the ε-closure of each state.
(ii) Convert the automaton to an equivalent DFA.
(b) Transform the following DNF to a CNF:

$$
x_{1}^{\prime} x_{2}^{\prime} x_{3}^{\prime}+x_{1}^{\prime} x_{2}^{\prime} x_{3}+x_{1} x_{2}^{\prime} x_{3}^{\prime}+x_{1} x_{2} x_{3}^{\prime}
$$

(c) Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be defined by

$$
f(x)= \begin{cases}\frac{x}{2} & \text { if } \\ x & x \text { is even } \\ x & \text { if } \\ x \text { is odd }\end{cases}
$$

Prove that f is order preserving.
15.(a) Suppose a 3-variable Boolean Term is given as follows: $\phi=x y+x z^{\prime}+y z$.

Minimize ϕ using K-map.
(b) Obtain a Boolean expression which represents the following circuit. Moreover; draw an equivalent circuit as simple as you can:

(c) Suppose
$\phi(a, b, c, d)=\sum m(0,1,3,7,8,9,11,15)$.
Minimize ϕ using Quine-McCluskey method.
16.(a) A room has three entrances and at each entrance there is a switch to independently control the light in the room in such a way that flicking any one of the switches changes the state of the light (on to off and off to on). Design a switching circuit to accomplish this.
(b) Show that the following logic circuits given by the figures below are equivalent.

