

UNIVERSITY OF NORTH BENGAL B Sc. Honours 6th Semester Examination 2023

B.Sc. Honours 6th Semester Examination, 2023

DSE-P3-MATHEMATICS

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.

The question paper contains DSE-3A and DSE-3B. Candidates are required to answer any *one* from the *two* courses and they should mention it clearly on the Answer Book.

DSE-3A

POINT SET TOPOLOGY

GROUP-A

	Answer any <i>four</i> questions	$3 \times 4 = 12$
1.	Let X denotes two element set $\{0, 1\}$. Prove that X^w is uncountable.	3
2.	Let $\{\tau_{\alpha}\}$ be a family of topologies on a non-empty set X. Show that $\bigcap_{\alpha} \tau_{\alpha}$ is also a topology on X.	3
3.	Prove or disprove — the union of an infinite number of closed sets in a topological space is closed.	3
4.	Show that \mathbb{Z}_+ is not finite.	3
5.	Prove that $ [0, 1] = c$.	3
6.	Show that the product of two Hausdorff spaces is Hausdorff.	3

GROUP-B

Answer any *four* questions $6 \times 4 = 24$

7.	Let β be a family of subsets of λ	satisfying the conditions:	6
		2	

(i) $\forall x \in X, \exists B \in \beta \text{ such that } x \in B$.

(ii) $\forall B_1, B_2 \in \beta \text{ with } x \in B_1 \cap B_2, \exists B_3 \in \beta \text{ such that } x \in B_3 \subseteq B_1 \cap B_2.$

Let τ be the collection of all possible union of members of β . Prove that τ is a topology on X.

8.	For any set X, prove that $ P(X) = 2^{ X }$.	6
----	--	---

- 9. (a) Show that every infinite set has an enumerable subset.
 (b) Let A be an enumerable set and a ∈ A be fixed. If A' = A \{a\}, show that A and A' are equipotent.
- 10. Show that a topological space X is Hausdorff iff the diagonal 6 $\Delta = \{(x, x) : x \in X\}$ is closed in $X \times X$.
- 11. Let $p: X \to Y$ be a closed, continuous and surjective map such that for every 6 point $y \in Y$, $p^{-1}(\{y\})$ is compact in X. Show that if Y is compact, so is X.
- 12. State and prove Cantor's Theorem.

GROUP-C

Answer any <i>two</i> questions	$12 \times 2 = 24$
---------------------------------	--------------------

6

13.(a) Show that if A, B, C are pairwise disjoint sets with $|A| = \alpha$, $|B| = \beta$, $|C| = \gamma$, 4 then

 $(\alpha^{\beta})^{\gamma} = \alpha^{\beta\gamma}.$

- (b) If *n* is any natural number and *A* be any infinite set, then prove that n+|A|=|A|.
- (c) For $a, b \in \mathbb{R}$, define a < b if b-a is positive and rational. Show that '<' is a strict partial order on \mathbb{R} . What are the maximal simply ordered subsets of \mathbb{R} ?
- 14.(a) Let A and B be proper subsets of the connected spaces X and Y respectively. 6 Show that $(X \times Y) \setminus (A \times B)$ is connected. Hence conclude that $\mathbb{R}^2 \setminus \mathbb{Q}^2$ is connected.
 - (b) Define limit-point compactness. Show that compact space is limit-point compact 6 but not conversely.
- 15.(a) State and prove Baire Category Theorem.6(b) Let $f: X \to Y$ be a bijective mapping. Prove that the following are equivalent:6
 - (i) f is a homeomorphism.
 - (ii) f is open and continuous.
 - (iii) f is closed and continuous.
 - (iv) $f(\overline{A}) = \overline{f(A)}$ for any $A \subseteq X$.

- 16.(a) Show that the topologies on \mathbb{R}^n induced by the Euclidean metric d and the square metric ρ are the same as the product topology on \mathbb{R}^n .
 - (b) Investigate the convergence and the possible limit(s) of the sequence $\{x_n = \frac{1}{n}\}$ in 6 the cofinite topology on \mathbb{R} .

DSE-3B

BOOLEAN ALGEBRA AND AUTOMATA THEORY

GROUP-A

Answer any *four* questions from the following

 $3 \times 4 = 12$

6

- 1. Let *L* be a lattice and $a, b \in L$. Then show that $a \leq b \Rightarrow a \lor c \leq b \lor c$ and $a \land c \leq b \land c$ for any $c \in L$.
- 2. For any two elements x, y in a lattice L, let $[x, y] = \{a \in L : x \le a \le y\}$. Show that [x, y] is a sub-lattice of L.
- 3. Consider the poset $P = (P(\mathbb{N}), \subseteq)$. Define a map $\phi: P \to P$ by

$$\phi(\upsilon) = \begin{cases} \{1\} & \text{if} & 1 \in \upsilon \\ \{2\} & \text{if} & 2 \in \upsilon \text{ and } 1 \notin \upsilon \\ \Phi & \text{otherwise} \end{cases}$$

Is ϕ an order isomorphism? Justify your answer.

- 4. Construct a finite automata equivalent to the regular expression:
 - (i) $L = ab(aa+bb)(a+b)^*b$

(ii)
$$L = aa^*(a+b)^*$$

5. Find the parse tree for generating the string 0100110 from the following grammar:

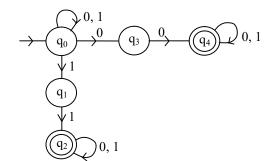
 $S \rightarrow 0S/1AA$ $A \rightarrow 0/1A/0B$ $B \rightarrow 1/0BB$

6. Construct a logic circuit that produces (x + y + z)(xyz)' as its output.

GROUP-B

Answer any	<i>four</i> questions	from the following	$6 \times 4 = 24$	1

7. (a) Convert the NFA to equivalent DFA:



- (b) Prove that every regular language is a context-free language.
- 8. (a) Check whether the following grammar is ambiguous or not: $S \rightarrow 0Y/01$ 3

$$X \to 0XY/0$$
$$Y \to XY1/1$$

(b) Design a DFA that accepts the following language

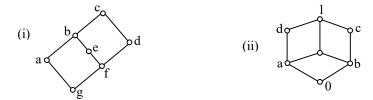
 $L = \{x \in \{0, 1\}^* : x \text{ is of even length and begins with } 01\}.$

9. (a) Determine the DNF of the following Boolean expression: 3

(x+y+z)(xy+x'z')'

- (b) Draw the switching circuits which realizes the following Boolean expressions:
 - (i) x(yz + y'z') + x'(yz' + y'z)
 - (ii) (x+y+z+u)(x+y+u)(x+z)

10.(a) Determine which of the following lattices are modular or distributive:



(b) Find an NFA M on $\Sigma = \{a, b\}$ such that $L(M) = \{ab, ba\}$.

- 11.(a) Construct a PDA to accept the following language: $L = \{a^n b^{2n} : n \ge 1\}.$
 - (b) For any Boolean algebra B, prove that (a+b)(b+c)(c+a) = ab+ba+ca for all 2 a, b, c \in B.

3

3

3

3

4

4

- 12.(a) Let *L* be a complemented distributive lattice. Prove that $(a \lor b)' = a' \land b'$ and $(a \land b)' = a' \lor b'$ for all $a, b \in L$.
 - (b) Show that in a complemented distributive lattice, the following are equivalent

(i) $a \le b$ (ii) $a \land b' = 0$ (iii) $a' \lor b = 1$ (iv) $b' \le a'$

GROUP-C

Answer any *two* questions from the following $12 \times 2 = 24$

- 13.(a) Design a Turing machine that accepts the language $L = \{O^{2^n} : n \ge 0\}$. 6
 - (b) State and prove pumping lemma for regular languages and hence show that the 4+2 language $\{a^p : p \text{ is a prime integer}\}$ is not regular.

14.(a) Consider the following ε -NFA.

	Е	а	b	С
$\rightarrow p$	φ	{ <i>p</i> }	<i>{q}</i>	{ <i>r</i> }
q	{ <i>p</i> }	$\{q\}$	{ <i>r</i> }	ϕ
* r	$\{q\}$	{ <i>r</i> }	ϕ	{ <i>p</i> }

- (i) Compute the ε -closure of each state.
- (ii) Convert the automaton to an equivalent DFA.
- (b) Transform the following DNF to a CNF:

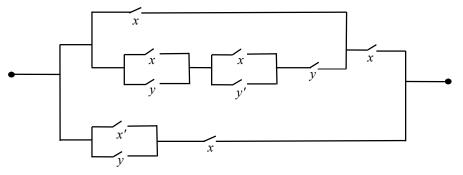
$$x_1'x_2'x_3' + x_1'x_2'x_3 + x_1x_2'x_3' + x_1x_2x_3'$$

(c) Let $f: \mathbb{N} \to \mathbb{N}$ be defined by

$$f(x) = \begin{cases} \frac{x}{2} & \text{if } x \text{ is even} \\ x & \text{if } x \text{ is odd} \end{cases}$$

Prove that f is order preserving.

- 15.(a) Suppose a 3-variable Boolean Term is given as follows: $\phi = xy + xz' + yz$. 4 Minimize ϕ using K-map.
 - (b) Obtain a Boolean expression which represents the following circuit. Moreover; 4 draw an equivalent circuit as simple as you can:



5

3

3+3

3

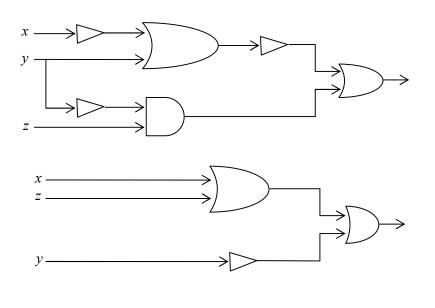
3

(c) Suppose

 $\phi(a, b, c, d) = \sum m(0, 1, 3, 7, 8, 9, 11, 15).$

Minimize ϕ using Quine-McCluskey method.

- 16.(a) A room has three entrances and at each entrance there is a switch to independently control the light in the room in such a way that flicking any one of the switches changes the state of the light (on to off and off to on). Design a switching circuit to accomplish this.
 - (b) Show that the following logic circuits given by the figures below are equivalent.



4

6

6